Full details about this meeting will be posted here: https://www.benty-fields.com/manage_jc?groupid=191.

The

meets weekly to discuss current applications across a wide variety of research domains and software methodologies. Register here to view, propose and vote for this group's upcoming discussion topics. All interested members of the UC Berkeley and LBL communities are welcome and encouraged to attend. Questions may be directed to François Lanusse.Berkeley Statistics and Machine Learning Discussion Group

### Speaker(s)

### François Lanusse

I am a Data Science Fellow at BIDS and the Berkeley Center for Cosmological Physics exploring the intersection between Cosmology, Statistics, and Machine Learning. My research has been focused on measuring and exploiting the gravitational lensing effect (in which distant galaxies appear distorted due to the presence of massive structures along the line of sight) with the development of novel tools and methodologies based on sparse signal representations, convex optimization, and deep learning.

I am an active member of the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration which aims at answering pressing questions about the nature of Dark Energy, a force thought to drive the accelerated expansion of the Universe. LSST will observe billions of galaxies over a period of ten years, measuring in particular the lensing effect in great details to constrain cosmological models. The unprecedented scale and complexity of these modern cosmological surveys involve a number of outstanding challenges which drive most of my research into new methodologies impacting different stages of the science analysis, from image processing to the statistical inference of cosmological parameters.

Before joining Berkeley I have been working as a postdoctoral researcher within the McWilliams Center for Cosmology at Carnegie Mellon University, after completing a PhD in astrophysics at CEA Saclay near Paris in 2015.

### Uros Seljak

Uros Seljak is a professor in UC Berkeley's Physics and Astronomy departments, a Senior Scientist at LBNL in the Physics Division, as well as a co-director of Berkeley Center for Cosmological Physics. His main research is in cosmology, where he combines theoretical, numerical, and data analysis methods to investigate the universe properties using cosmological observations, from cosmic microwave background to present day galaxy and dark matter distributions. His recent work combines statistics, numerical optimization, and N-body simulation methods to analyze large cosmological surveys, both space based (WMAP, Planck, Euclid, WFIRST) and ground based (SDSS, DESI, LSST). At Berkeley he teaches a course on Bayesian statistics and data science in Physics department. He has a PhD from MIT, was a postdoctoral fellow at Harvard and a faculty at Princeton University and Zurich University prior to Berkeley. He is a recipient of Sloan and Packard Fellowships, NSF CAREER award, and the Warner Prize of the American Astronomical Society.