Data Science Studies Berkeley
This working group designs and conducts research projects across disciplines and methods to understand the challenges posed by data scientists’ practices in the academic context. In collaboration with our partner institutions, it also develops innovative quantitative and qualitative metrics to measure the evolution of data science environments.
Working Spaces and Culture
Our hope and expectation is that BIDS will unite people who are developing data science opportunities in an environment where daily collaboration will help grow a real community of practice through targeted activities and shared physical space. This working group investigates how working space and culture can be used to better engage researchers and promote cross-disciplinary collaboration.
Reproducibility and Open Science
This working group studies the cultural, educational, legal, and technological barriers to reproducible and open research. Through example, we document and demonstrate what advantages reproducibility has for the scientific process and how individuals and teams can improve their productivity by adopting tools and workflows that support reproducibility.
Software Tools and Environments
As science becomes more data driven, software plays an increasingly important role. However, faculty, students, and postdocs in many scientific domains are not equipped to develop and deliver the advanced software they require. The charge of this working group was to fill this gap, with an emphasis on bridging the culture of academic research with that of open source software.
Education and Training
Successful adoption of data science will require several linked efforts. Domain scientists need training in the foundations of data science, including programming, statistics, and reproducible computational science, while methodological scientists need training to work productively in domain areas. This working group addresses these needs through a combination of activities, including workshops and bootcamps.
Career Paths and Alternative Metrics
The current system for career advancement in research universities, which is heavily weighted toward publication, often does not align with what makes a modern data scientist successful. This working group aims at identifying and promoting alternative metrics and career paths that lead to growth and advancement opportunities for scientists who do not fit the typical academic mold but are critical to its success.