Hybrid Physical - Deep Learning Models for Astronomical Inverse Problems



François Lanusse

BIDS Alum – Data Science Fellow

While at UC Berkeley, François Lanusse was a Data Science Fellow at BIDS and a Postdoctoral Scholar with the Berkeley Center for Cosmological Physics (BCCP) and the Foundations of Data Analysis (FODA) Institute, exploring the intersection between cosmology, statistics, and machine learning. His research was focused on measuring and exploiting the gravitational lensing effect (in which distant galaxies appear distorted due to the presence of massive structures along the line of sight) with the development of novel tools and methodologies based on sparse signal representations, convex optimization, and deep learning. Before joining Berkeley, Dr. Lanusse worked as a postdoctoral researcher within the McWilliams Center for Cosmology at Carnegie Mellon University, after completing a PhD in astrophysics at CEA Saclay near Paris.