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Motivation: Embedded Systems

▶ Embedded Systems
▶ Data Processing Units are embedded into large products

▶ Failure in Embedded Systems
▶ Functional Failure
▶ Safety Risks
▶ Disruption of Services
▶ Financial Losses
▶ Loss of Trust and Confidence
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▶ Embedded Systems
▶ Data Processing Units are embedded into large products

▶ Failure in Embedded Systems
▶ Functional Failure
▶ Safety Risks
▶ Disruption of Services
▶ Financial Losses
▶ Loss of Trust and Confidence

Such consequences necessitates design verification and testing, in
particular for safety-critical applications!
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Motivational Example: Pentium FDIV bug

▶ A hardware bug affecting the floating-point (FP) unit
of the early Intel Pentium processors.

▶ Returns incorrect/inaccurate binary FP results when
dividing certain pairs of high-precision numbers.

▶ Estimated around 1 in 9 billion FP divides with
random parameters would produce inaccurate
results
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Motivational Example: Pentium FDIV bug

▶ One commonly-reported example is dividing
4,195,835 by 3,145,727:
▶ A flawed Pentium processor returns

4,195,835
3,145,727

= 1.333739068902037589

▶ The correct value of the calculation is
4,195,835
3,145,727

= 1.333820449136241002

▶ Incurred a $475 million to recover replacement and
write-off of these processors
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Circuit Design Verification

▶ Implementation Errors: occur during the mapping of a
specification into the final circuit

▶ Impact: make all produced chips erroneous
▶ Formals methods are used to avoid design errors

before producing any chip

Specification

Implementation

xn

x1

Output

..
.

..
.
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Circuit Design Verification–Example

Definition of AND gate: The output is ON when both x1 and
x2 are ON.

x1

x2

L(x1, x2) = x1 · x2

AND Gate
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0 0 0
0 1 0
1 0 0
1 1 1
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Circuit Design Verification–Example

Definition of AND gate: The output is ON when both x1 and
x2 are ON.

x1

x2

L(x1, x2) = x1 · x2

AND Gate

x1 x2 x1 · x2

0 0 0
0 1 0
1 0 0
1 1 1

By covering all the possible cases (4 combinations in this
example), we can verify the functionality of this circuit.

DIFFSAMPLER 5 / 29



Circuit Design Test

▶ Production Errors: defects caused during the production of
chips which change their functionality

▶ Causes: A broken transistor switch, a wire shorted to VDD
or to ground, unwanted connections, wrong doping, etc.

▶ Formals methods to find the production errors

x1

x2

x3

Faulty circuit

x1

x2

x3

Output

Good circuit
DIFFSAMPLER 6 / 29



Circuit Design Test–Example

A good model for such faults is to assume that all faults manifest
themselves as some wires being permanently stuck at logic value 0 or 1.

x1

x2

x3

L(x1, x2, x3)

x1 x2 x3 L(x1, x2, x3)
0 0 0 0
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Circuit Design Test–Example

A good model for such faults is to assume that all faults manifest
themselves as some wires being permanently stuck at logic value 0 or 1.

x1

x2

x3

A L(x1, x2, x3)

x1 x2 x3 A L(x1, x2, x3)
0 0 0 stuck-at-1 1

The valuation x1x2x3 = 000 can detect the occurrence of a stuck-at-1 fault
on wire A.
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How to find these input combinations?

▶ The most common approach for circuit design verification
and testing is Boolean satisfiability problem (SAT) solving.

▶ Tremendous performance improvements over years
▶ State-of-the-art SAT solvers are able to

▶ solve problems from real-world applications (e.g., large industrial circuits)
▶ handle optimization & enumeration problems, multi-valued domains, hybrid

systems
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Boolean Satisfiability Problem (SAT)

Given:
▶ A Boolean formula φ in Conjunctive Normal Form (CNF)
▶ A CNF is a conjunction (AND) of clauses: C1 ∧ · · · ∧ Cm

▶ A clause is a disjunction (OR) of literals: (l1 ∨ · · · ∨ lk)
▶ A literal l is a Boolean variable or its negation: l or ¬l

Question:
▶ Is there any valuation of the variables that satisfies φ?

Techniques for solving SAT instances are called SAT solvers
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SAT–Example

x1

x2

L(x1, x2) = x1 · x2

AND Gate

x1 x2 x1 · x2 clauses
0 0 0 x1 ∨ x2 ∨ ¬L
0 1 0 x1 ∨ ¬x2 ∨ ¬L
1 0 0 ¬x1 ∨ x2 ∨ ¬L
1 1 1 ¬x1 ∨ ¬x2 ∨ L

▶ CNF = (¬x1 ∨¬x2 ∨L)∧ (¬x1 ∨ x2 ∨¬L)∧ (x1 ∨¬x2 ∨¬L)∧ (x1 ∨ x2 ∨¬L)
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Typical SAT Solving Flow

SAT solverSAT
instance

SAT
solutions

Step #1: Real problem
in CNF
▶ ¬x1 ∨ ¬x2 ∨ L
▶ ¬x1 ∨ x2 ∨ ¬L
▶ x1 ∨ ¬x2 ∨ ¬L
▶ x1 ∨ x2 ∨ ¬L

Step #2: Adoption of
SAT solvers
▶ Minisat22
▶ Glucose42
▶ Cadical195
▶ CryptoMinisat

Step #3: SAT solution(s)

▶ x1 = 1, x2 = 1,L = 1
▶ x1 = 1, x2 = 0,L = 0
▶ x1 = 0, x2 = 1,L = 0
▶ x1 = 0, x2 = 0,L = 0
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Intractability Problem with SAT

Digital circuits usually take a few operands as inputs. For example, let’s consider
an n-bit adder circuit with two operands.
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Intractability Problem with SAT

Digital circuits usually take a few operands as inputs. For example, let’s consider
an n-bit adder circuit with two operands.

input bit-width (n bits) # input combinations
2 16
3 64
4 256
5 1,024
6 4,096
7 16,384
8 65,536
...

...
32 18,446,744,073,709,551,616
...

...
64 340,282,366,920,938,463,463,374,607,431,768,211,456
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Intangible Representation of SAT

▶ CNF format completely change the structure of
multi-level circuits.

▶ It is almost impossible to understand what circuit
CNF describes.

▶ Make the communication between test and
design teams more difficult.
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New Testing/Verification Method

x1
x6

x2
x7

x4
x5

x3

f

Research goal: Find a set of input
combinations satisfying any desired output.

▶ Keep the structure of the
circuit intact.

▶ Fast and inherently parallel
method with the support of
GPU acceleration.

▶ Understands both the
temporal and spatial nature
of computations in
hardware.
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Proposed Method: ML-based Approach

▶ The idea is to reframe the testing/verification problem as a
supervised multi-output regression task.

▶ This method is analogous to what we know as adversarial
example generation with different goal.

▶ We use gradient descent to update and obtain valid input
combinations for any desired outputs.

▶ The key to generate valid input combinations is how we
can describe basic logic gates.
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Modeling Logic Gates

We use probability for modeling logic gates.

AND gate: The probability of AND gate outputting 1 is the product of the input
operands’ probability p1 and p2, i.e.,

pAND = p1 × p2

OR gate: The probability of OR gate outputting 1 is

pOR = 1 − (1 − p1)× (1 − p2)

NOT gate: The probability of NOT gate outputting 1 is

pNOT = 1 − p1
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Modeling Logic Gates (Combinational Circuits)

▶ Any other types of gates such as NAND, NOR, XOR and
XNOR can be modeled in a similar manner.

▶ Any combinational digital circuits can be described using
the probabilistic models of basic gates.

▶ The inputs to such models can take any real value between
0 and 1.
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Modeling Memory Elements

▶ Memories (latches and flip-flops/registers) are often referred to as the
“state” of the circuit.

▶ Modeling states (i.e., memories) of circuits is analogous to modeling
recurrent neural networks.

A A A A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .
In this figure, A can be an adder circuit incrementing the value of state by 1

at each time step (i.e., clock cycle) as an example.
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Our ML-based Verification/Testing Flow

Embedding Layer Circuit Loss Calculation

backward pass

forward pass

▶ Embedding layer: Stores learning parameters which are
inputs to the circuit

▶ Circuit: Describes the functionality of the under-test circuit
(UTC) using probability

▶ Loss Calculation: Calculates the loss between the
expected output and the output of UTC
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Our ML-based Verification/Testing Flow

Embedding Layer Circuit Loss Calculation

backward pass

forward pass

▶ Forward pass: Performs forward computations according to
the functionality of the under-test circuit on inputs (inputs
are randomly initialized at the beginning)

▶ Backward pass: Gradients w.r.t. inputs are calculated and
used to update the soft-valued inputs
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Application: SAT Instances

▶ CNF format can be interpreted as two-level circuit
▶ The output of such circuit is specifiable when the output of

AND gate is 1
▶ There might be multiple solutions to the problem
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DIFFSAMPLER: Formulation of SAT

Embedding layer:
We encode n variables of the SAT instance as parameters (i.e., V ∈ Rb×n) of an
embedding layer where b denotes the batch size.

E = σ(V)
[
C
]
∈
[
0,1

]b×m×lmax ,

▶ We express m clauses as the matrix C ∈ Zm×lmax where lmax denotes the
maximum number of literals in any single clause in the SAT instance.

▶ The padding index 0 is reserved for the noncontributory 0-valued eijk in the
OR operation.

▶ The clause matrix C contains indices to the variables where the positive and
negative indices denote variables in their true and complementary forms,
respectively.

▶ The embedded element eijk ∈ E is equal to vit ∈ V when its corresponding
index is positive; otherwise 1 − vit is assigned to eijk .

▶ We use the sigmoid function σ to ensure values between zero and one.
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DIFFSAMPLER: Formulation of SAT

Circuit:

The OR operations are computed by

Y = 1 −
∏
lmax

(1 − E) ∈
[
0,1

]b×m
,

▶ Due to the large number of clauses, the AND would results in a value close to
0, resulting in gradient vanishing during the backpropagation.

▶ Instead of enforcing AND gate to output 1, we enforce the OR between literals
in each clause to be 1.
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DIFFSAMPLER: Formulation of SAT

Loss calculation:

The ℓ2-loss function L is obtained by

L =
∑
b,m

||1 − Y||22 .

▶ We use gradient descent to minimize this loss function.
▶ Upon convergence, the batch of soft values (i.e., V) are converted to hard

values (i.e., Ṽ ∈ {0,1}b,n) based on their distance from binary values as b
solutions to the SAT problem.
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Experimental Setup

▶ A prototype for DIFFSAMPLER, implemented in Python using a
high-performance numerical computing library (JAX).

▶ We compare our sampler implementation against SOTA baselines
(UNIGEN3 and CMSGEN) in terms of the run time performance and
uniformity of the solutions.
▶ UNIGEN3: M. Soos et al., “Tinted, detached, and lazy cnf-xor solving and its

applications to counting and sampling,” in Proceedings of International
Conference on Computer-Aided Verification (CAV), 2020.

▶ CMSGEN: Golia et al., “Designing samplers is easy: The boon of testers,” in
Proc. of Formal Methods in Computer-Aided Design (FMCAD), 2021.

▶ A public domain benchmark suite (60 SAT instances of different sizes)
utilized for comparison purposes
▶ https://zenodo.org/records/3793090
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Experimental Setup

▶ Both baseline samplers were executed on server-grade Intel Xeon
Gold 6134 CPU with 3.2GHz clock rate and 1TB RAM

▶ DIFFSAMPLER results are from running on a system equipped with an
Intel Xeon E5-2698 with 2.2GHz clock rate and 8 32GB NVIDIA V100
GPUs.
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Experimental Results: Runtime Performance for Representative
Subset of 10 Benchmarks

▶ Run time performance, measured in terms of unique solution throughput.
▶ Throughput is measured under the case where each method is aimed to

produce 1000 unique solutions.

Benchmark DIFFSAMPLER UNIGEN3 CMSGEN

or-50-10-7-UC-10 75,040.1 64.7 36,693.5
or-70-5-5-UC-30 13,665.6 616.0 36,344.1

or-100-20-8-UC-50 33,728.7 84.4 26,888.6

blasted_1_b12_1 25.8 400.4 10,767.4
blasted_1_b14_3 88.8 97.8 16,495.0

tire-1 35.4 36.8 16,271.4

blasted_1_12_even2 0.7 12.2 1,246.9
blasted_1_14_even 3.3 15.9 4,288.2

modexp-8-4-1 NA 2.8 6.4
hash-02 NA 8.0 1.0
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Experimental Results: Runtime Performance for Representative
Subset of 18 Benchmarks

▶ Log-Log plot of sampler run time in microseconds against the count of unique
satisfying solutions found within that run time. A representative subset of 18
SAT problems from the evaluation benchmark are used (or-50-10-7, or-60-20,
or-70-5-5, and or-100-20-8).
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Experimental Results: Uniformity Measurement for
Representative Subset of 3 Benchmarks

▶ For all benchmarks where DIFFSAMPLER discovered solutions, BARBARIK
framework (which evaluates the uniformity of solutions) returned “Accept”,
confirming the uniformity of the generated solutions.
▶ Pote et al., “On scalable testing of samplers,” in Advances in Neural Information

Processing Systems (NeurIPS), 2022.
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Experimental Results: Uniformity Measurement for
Representative Subset of 3 Benchmarks

▶ Hamming distance distribution statistics between satisfying solutions.

Benchmark tire-2 blasted_case_1_b12_1 or-100-20-8-UC-10

Sampler DIFFSAMPLER UNIGEN3 CMSGEN DIFFSAMPLER UNIGEN3 CMSGEN DIFFSAMPLER UNIGEN3 CMSGEN

Range [2,121] [3,123] [3,131] [7, 157] [3,30] [6,200] [20,75] [27,91] [34,111]
Avg 46.0 48.2 69.1 72.7 16.9 116.4 48.0 57.5 74.2
Std 13.1 12.3 19.7 15.5 3.3 24.7 5.9 7.1 8.2

Entropy 5.7 5.6 6.3 6.0 3.8 6.7 4.6 4.9 5.1
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Experimental Results: Uniformity Measurement for
Representative Subset of 3 Benchmarks

▶ Hamming distance distribution statistics between satisfying solutions.

▶ The entropy quantifies the degree of variability in the solutions. Higher
entropy suggests that solutions are scattered throughout the search space,
making it less likely for them to be uniformly distributed, whereas lower
entropy suggests more structured and constrained solutions.
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What About Multi-Level Circuits?

▶ Unfortunately, there are a very few benchmarks available
for hardware verification.

▶ The existing benchmarks require the conversion from HDL
codes (Verilog or VHDL) to PyTorch, which takes
engineering efforts.

▶ We are currently preparing benchmarks for our tool, stay
tuned!
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Future Works

▶ Preprocessing clauses by applying two-level minimization
▶ Preparing parser that can convert HDL codes to their

corresponding PyTorch description
▶ Measurement of experimental results on GPUs in terms of

run time and the number solutions found
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Conclusion

▶ Presented a differentiable sampling method, called
DIFFSAMPLER

▶ Reframed the SAT problem as a supervised multi-output
regression task

▶ Independent generation of satisfying solutions using GD
▶ Support of GPU acceleration due to the parallel nature of

the computing paradigm
▶ Comparable run time performance and uniformity

compared to SOTA sampling techniques.
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Thank you for your attention

▶ Arash Ardakani, Minwoo Kang, Kevin He, Vighnesh Iyer, Suhong
Moon, John Wawrzynek, “Differential and Massively Parallel Sampling
of SAT Formulas”, accepted for publication in DAC’24.

▶ Code is available at https://github.com/LBR-DAC-2024/DiffSampler
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