
Late Breaking Results: Differential and
Massively Parallel Sampling of SAT Formulas
Arash Ardakani*, Minwoo Kang*, Kevin He, Vighnesh Iyer, Suhong Moon, John Wawrzynek

University of California, Berkeley
{arash.ardakani, minwoo kang}@berkeley.edu

Abstract—Diverse solutions to the Boolean satisfiability (SAT) problem
are essential for thorough testing and verification of software and
hardware designs, ensuring reliability and applicability to real-world
scenarios. We introduce a novel differentiable sampling method, called
DIFFSAMPLER, which employs gradient descent (GD) to learn diverse
solutions to the SAT problem. By formulating SAT as a supervised
multi-output regression task and minimizing its loss function using GD,
our approach enables performing the learning operations in parallel,
leading to GPU-accelerated sampling and comparable run time perfor-
mance w.r.t. heuristic samplers. We demonstrate that DIFFSAMPLER can
generate diverse uniform-like solutions similar to conventional samplers.

I. INTRODUCTION

Boolean satisfiability (SAT) problem solving is a critical tech-
nique in software and hardware design verification, addressing the
challenges posed by the complexity and scale of modern systems.
Uniform sampling is a core challenge for SAT samplers with
applications in a diverse range of areas such as constrained-random
simulation, constraint-based fuzzing, configuration testing, and bug
synthesis [1]. Modern SAT problem samplers leverage sophisticated
algorithms and heuristics to efficiently explore vast solution spaces
and provide uniform satisfying solutions to complex logical formu-
las.

High-throughput sampling stands as a cornerstone for SAT sam-
plers, serving a multitude of essential purposes. Primarily, it en-
hances efficiency and scalability by facilitating rapid exploration
of extensive solution spaces, particularly crucial when tackling
real-world problems with numerous variables and constraints. Fur-
thermore, it increases coverage across solution spaces, aiding in
identifying rare solutions and nuanced edge cases. Additionally,
high-throughput sampling elevates statistical confidence through the
generation of larger sample sizes, thus mitigating sampling variance.

While GPU acceleration can offer significant performance ben-
efits across various applications, current state-of-the-art (SOTA)
SAT solvers and sampling algorithms are typically executed on
CPUs. This is because these solvers rely heavily on sequential
processes, which are better suited for CPUs, particularly due to
their reliance on branching and backtracking. Instead, to enable
GPU acceleration for SAT sampling, we propose a fundamentally
different approach. Our method introduces a novel technique that
utilizes gradient descent (GD) for learning diverse solutions to
the SAT problem. We re-frame the task of sampling formulas
for a SAT instance as a supervised multi-output regression task
and employ GD to minimize its loss function. This differentiable
optimization task resembles typical machine learning problems, is
inherently parallel, and can be accelerated using GPUs, allowing
for the independent generation of satisfying solutions through a
learning process. Due to GPU-accelerated training, our differentiable
SAT sampling method achieves a comparable throughput to that of
SOTA sampling algorithms, despite implemented in a higher-level
programming language (Python), while also generating uniform-
like solutions across various benchmarks featuring different numbers
of variables and clauses. We refer to our sampling technique as
DIFFSAMPLER in this paper. The code of DIFFSAMPLER is available
at https://github.com/LBR-DAC-2024/DiffSampler.

*Both authors contributed equally.

1e3 1e4 1e5 1e6 1e7
(Log) Number of Unique Solutions

1e 2

1e 1

1e0

1e1

1e2

1e3

1e4

1e5

1e6

(L
og

) R
un

 T
im

e
(s

)

CMSGen
UniGen
DiffSampler (Ours)

Fig. 1: Log-Log plot of sampler run time in microseconds against the
count of unique satisfying solutions found within that run time. A
representative subset of 18 SAT problems from the evaluation bench-
mark are used (or-50-10-7, or-60-20, or-70-5-5, and or-100-20-8).

II. RELATED WORK

Several SAT formula samplers have been developed in literature,
including UNIGEN3 [2] with approximate guarantees of uniformity,
and CMSGEN[1] and QUICKSAMPLER [3] that emphasize sampling
efficiency. Prior work have also used data-parallel hardware for
SAT solving, but have largely been limited to parallelizing conflict-
driven clause-learning (CDCL) or other heuristic-based SAT solving
algorithms [4], [5]. Our method best aligns with the formulation
of a SAT instance as a constrained numerical optimization problem
as in UNISAT [6], which predates the advent of today’s massively
parallel hardware. While some work [7] have similarly formulated a
relaxed, differential approach to SAT solving, our is the first to effec-
tively showcase the utility of GPU-accelerated formula sampling on
standard benchmarks that scale beyond the small, random instances
considered in prior work.

III. METHODOLOGY
SAT problems are typically expressed in conjunctive normal

form (CNF) formulas, comprising m clauses connected by AND
operators, with each clause containing l literals connected by OR
operators. A literal represents either a variable or the negation of
a variable. Finding a satisfying solution to the SAT problem entails
assigning values to variables such that all OR gates yield an output of
1. This enables us to reframe the SAT problem as a supervised multi-
output regression task, where a solution is derived through a learning
process. To facilitate learning, we initially assign random soft values
to each variable. Subsequently, we conduct OR operations among
literals in all clauses simultaneously, utilizing a probabilistic model
for the OR gate. Following the computation of OR gate outputs
in terms of probability, we construct a loss function to penalize
variables based on the deviation of their associated clauses from
generating a 1 output in OR operations. Variables are then updated
iteratively, and the process is repeated until convergence is achieved.

To formulate our learning approach, we encode n variables of
the SAT instance as parameters (i.e., V ∈ Rb×n) of an embedding
layer where b denotes the batch size. Let us express m clauses as
the matrix C ∈ Zm×lmax where lmax denotes the maximum number
of literals in any single clause in the SAT instance. The clause
matrix C contains indices to the variables where the positive and
negative indices denote variables in their true and complementary
forms, respectively. We use padding with 0 to achieve consistency

in the size of all clauses. To ensure the soft values of variables are
represented as a probability value between zero and one, we use the
sigmoid function σ. As such, the embedded clauses can be expressed
as

E = σ(V)
[
C
]
∈
[
0, 1

]b×m×lmax , (1)
where the embedded element eijk ∈ E is equal to vit ∈ V when
its corresponding index is positive; otherwise 1 − vit is assigned
to eijk. We reserve the padding index 0 for the noncontributory 0-
valued eijk in the OR operation. The OR operations are computed
by

Y = 1−
∏
lmax

(1− E) ∈
[
0, 1

]b×m
, (2)

and accordingly the ℓ2-loss function L is obtained by

L =
∑
b,m

||1− Y||22 . (3)

By computing the loss function which measures the distance between
the matrix Y and expected output 1 for all the clauses across all
batches, the variables V can be updated using GD in an iterative
manner. Upon convergence, the batch of soft values (i.e., V) are
converted to hard values (i.e., Ṽ ∈ {0, 1}b,n) based on their distance
from binary values as b solutions to the SAT problem.

IV. EXPERIMENTAL RESULTS

Based on our re-formulation of the SAT problem above, we
demonstrate a prototype for DIFFSAMPLER, implemented in Python
and using a high-performance numerical computing library (JAX).
In this Section, we compare our sampler implementation against
SOTA baselines (UNIGEN3 and CMSGEN), assessing both in terms
of the run time performance and uniformity of the solutions. For
comprehensive evaluation. we use a public domain benchmark suite
utilized in prior work 1. Both baseline samplers were executed on
server-grade Intel Xeon Gold 6134 CPU with 3.2GHz clock rate and
1TB RAM; DIFFSAMPLER results are from running on a system
equipped with an Intel Xeon E5-2698 with 2.2GHz clock rate and
8 32GB NVIDIA V100 GPUs.

A. Run time Performance

We selected 60 instances from the uniform sampling benchmark
used in prior work, which includes instances from applications
as probabilistic reasoning and bounded model checking. Figure 1
summarizes the scaling trends of run time performance against
number of unique formulas sampled. We see that (1) DIFFSAMPLER

is overall much more efficient than UNIGEN and (2) even compared
to CMSGEN, our method scales more efficiently to sampling greater
numbers of solutions. Direct run time performance, measured in
terms of throughput, is also depicted in Table I. For a represen-
tative subset of 10 benchmarks, we measured the throughput of
each sampler when producing 1000 unique solutions. Although the
baselines are highly optimized C++ implementations, resulting in
improved run time performance, our method offers comparable run
time performance and, in certain cases, even surpasses the baselines
for specific instances.

B. Uniformity Measurement

We employed the BARBARIK sampler test framework [8] to assess
the uniformity of the generated solutions for each benchmark. For
evaluation using BARBARIK, we adhered to the default parameter
settings as recommended by the authors, setting the tolerance
parameter ϵ to 0.3, the intolerance parameter η to 1.8, and the
confidence parameter δ to 0.1. For all benchmarks in Section IV-A
where DIFFSAMPLER discovered solutions, BARBARIK returned

1https://zenodo.org/records/3793090

TABLE I: Run time performance, measured in terms of unique
solution throughput. Throughput is measured under the case where
each method is aimed to produce 1000 unique solutions.

Benchmark DIFFSAMPLER UNIGEN3 CMSGEN

or-50-10-7-UC-10 75,040.1 64.7 36,693.5
or-70-5-5-UC-30 13,665.6 616.0 36,344.1

or-100-20-8-UC-50 33,728.7 84.4 26,888.6

blasted 1 b12 1 25.8 400.4 10,767.4
blasted 1 b14 3 88.8 97.8 16,495.0

tire-1 35.4 36.8 16,271.4

blasted 1 12 even2 0.7 12.2 1,246.9
blasted 1 14 even 3.3 15.9 4,288.2

modexp-8-4-1 NA 2.8 6.4
hash-02 NA 8.0 1.0

TABLE II: Hamming distance distribution statistics between satisfy-
ing solutions sampled by DIFFSAMPLER (DS), UNIGEN3(UG), and
CMSGEN(CG).

Benchmark tire-2 blasted case 1 b12 1 or-100-20-8-UC-10

Sampler DS UG CG DS UG CG DS UG CG

Range [2,121] [3,123] [3,131] [7, 157] [3,30] [6,200] [20,75] [27,91] [34,111]
Avg 46.0 48.2 69.1 72.7 16.9 116.4 48.0 57.5 74.2
Std 13.1 12.3 19.7 15.5 3.3 24.7 5.9 7.1 8.2

Entropy 5.7 5.6 6.3 6.0 3.8 6.7 4.6 4.9 5.1

“Accept”, confirming the uniformity of the generated solutions. To
further analyze uniformity in a quantitative way, we measured the
entropy of the distribution between Hamming distances between the
generated solutions. The entropy quantifies the degree of variability
in the solutions. Higher entropy suggests that solutions are scattered
throughout the search space, making it less likely for them to be uni-
formly distributed, whereas lower entropy suggests more structured
and constrained solutions. For majority of benchmark instances,
UNIGEN3 shows the lowest entropy suggesting more uniformity
whereas CMSGEN presents the highest entropy suggesting more
diversity among the generated solutions. DIFFSAMPLER, on the
other hand, is behaviorally closer to UNIGEN3. Table II summarizes
the distribution statistics of Hamming distances between solutions
for a representative subset of 3 benchmarks.

V. CONCLUSION

In this paper, we presented a differentiable sampling method,
called DIFFSAMPLER, by reframing the SAT problem as a su-
pervised multi-output regression task, allowing the independent
generation of satisfying solutions using GD. We then demonstrated
that DIFFSAMPLER can be accelerated using GPUs due to the
parallel nature of its computing paradigm, enabling high-throughput
generation of solutions. The experimental results our method show a
comparable run time performance and uniformity compared to SOTA
sampling techniques.

REFERENCES

[1] P. Golia et al., “Designing samplers is easy: The boon of testers,” in
Proc. of Formal Methods in Computer-Aided Design (FMCAD), 2021.

[2] M. Soos et al., “Tinted, detached, and lazy cnf-xor solving and its
applications to counting and sampling,” in Proceedings of International
Conference on Computer-Aided Verification (CAV), 2020.

[3] R. Dutra et al., “Efficient sampling of sat solutions for testing,” in Proc.
of the International Conference on Software Engineering, 2018.

[4] C. Costa, “Parallelization of sat algorithms on gpus,” Technical report,
INESC-ID, Technical University of Lisbon, Tech. Rep., 2013.

[5] M. Osama et al., “Sat solving with gpu accelerated inprocessing,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2021, pp. 133–151.

[6] J. Gu, “Global optimization for satisfiability (sat) problem,” IEEE Trans.
on Knowledge and Data Engineering, vol. 6, no. 3, pp. 361–381, 1994.

[7] T. Sato et al., “Matsat: a matrix-based differentiable sat solver,” arXiv
preprint arXiv:2108.06481, 2021.

[8] Y. Pote et al., “On scalable testing of samplers,” in Advances in Neural
Information Processing Systems (NeurIPS), 2022.

