A data science framework for planning the growth of bicycle infrastructures

Luis E. Olmos, Maria Sol Tadeo, Dimitris Vlachogiannis, Fahad Alhasoun, Xavier Espinet Alegre, Catalina Ochoa, Felipe Targa, Marta C. González

Transportation Research Part C: Emerging Technologies
March 28, 2020

Abstract: Cities around the world are turning to non-motorized transport alternatives to help solve con- gestion and pollution issues. This paradigm shift demands on new infrastructure that serves and boosts local cycling rates. This creates the need for novel data sources, tools, and methods that allow us to identify and prioritize locations where to intervene via properly planned cycling infrastructure. Here, we de ne potential demand as the total trips of the population that could be supported by bicycle paths. To that end, we use information from a phone-based travel demand and the trip distance distribution from bike apps. Next, we use percolation theory to prioritize paths with high potential demand that bene t overall connectivity if a bike path would be added. We use Bogotá as a case study to demonstrate our methods. The result is a data science frame- work that informs interventions and improvements to an urban cycling infrastructure.

Featured Fellows

Marta C. González

City and Regional Planning, Civil and Environmental Engineering, UC Berkeley; Energy Analysis & Environmental Impacts Division, LBNL
BIDS Faculty Council