Rapid tuning shifts in human auditory cortex enhance speech intelligibility

Christopher R. Holdgraf, Wendy de Heer, Brian Pasley, Jochem Rieger, Nathan Crone, Jack J. Lin, Robert T. Knight & Frédéric E. Theunissen

Nature Communications
December 20, 2016

Experience shapes our perception of the world on a moment-to-moment basis. This robust perceptual effect of experience parallels a change in the neural representation of stimulus features, though the nature of this representation and its plasticity are not well-understood. Spectrotemporal receptive field (STRF) mapping describes the neural response to acoustic features, and has been used to study contextual effects on auditory receptive fields in animal models.The authors performed a STRF plasticity analysis on electrophysiological data from recordings obtained directly from the human auditory cortex. Here, the authors report rapid, automatic plasticity of the spectrotemporal response of recorded neural ensembles, driven by previous experience with acoustic and linguistic information, and with a neurophysiological effect in the sub-second range. This plasticity reflects increased sensitivity to spectrotemporal features, enhancing the extraction of more speech-like features from a degraded stimulus and providing the physiological basis for the observed ‘perceptual enhancement’ in understanding speech.



Featured Fellows

Chris Holdgraf

Project Jupyter, Data Science Education Program, Neuroscience
Alumni - Postdoctoral Researcher